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Numerical heat transfer in a cavity with a solar control
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SUMMARY

A transient two-dimensional computational model of combined natural convection, conduction, and
radiation in a cavity with an aspect ratio of one, containing air as a laminar and non-participating fluid,
is presented. The cavity has two opaque adiabatic horizontal walls, one opaque isothermal vertical wall,
and an opposite semitransparent wall, which consists of a 6-mm glass sheet with a solar control coating
of SnS–CuxS facing the cavity. The semitransparent wall also exchanges heat by convection and
radiation from its external surface to the surroundings and allows solar radiation pass through into the
interior of the cavity. The momentum and energy equations in the transient state were solved by finite
differences using the alternating direction implicit (ADI) technique. The transient conduction equation
and the radiative energy flux boundary conditions are coupled to these equations. The results in this
paper are limited to the following conditions: 1045Gr5106, an isothermal vertical cold wall of 21°C,
outside air temperatures in the range 30°C5T0540°C and incident solar radiation of AM2 (750
W m−2) normal to the semitransparent wall. The model allows calculation of the redistribution of the
absorbed component of solar radiation to the inside and outside of the cavity. The influences of the time
step and mesh size were considered. Using arguments of energy balance in the cavity, it was found that
the percentage difference was less than 4 per cent, showing a possible total numerical error less than this
number. For Gr=106 a wave appeared in the upper side of the cavity, suggesting the influence of the
boundary walls over the air flow inside the cavity. A Nusselt number correlation as a function of the
Rayleigh number is presented. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Over the last two decades, new technologies have been proposed and developed to control the
thermal gains through the large windowpanes of tall buildings to reduce their energy
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consumption. Solar control coatings developed by chemical deposition, which is still in
progress, is part of this new technology. The solar control coatings are used in buildings at
locations with warm climates to control, in a spectrally selective manner, the incidence of
sunlight to the rooms, and thus to reduce the thermal gains inside the building. However, an
important optical characteristic of this kind of material is its high absorptance in the solar
spectrum, which increases the temperature of the solar control coating and glasses. This
increment of the film and glass temperatures may cause additional thermal gains inside the
room instead of reducing them.

Several models have been developed to get a better understanding of the thermal perfor-
mance in a room. Natural convection in cavities heated differentially with adiabatic top and
bottom walls has become the classical research problem that has been studied extensively by
experimental, analytical, and numerical methods to get a better understanding of the govern-
ing processes [1–4]. Combined natural convection, conduction, and radiation in a cavity
appears in the work of Larson [5]. He considered a cavity with radiation exchange between
opaque walls and non-participating media with a high temperature source. Other authors
[6,7], in studies considering the effects of long wave radiation, included participating and
non-participating media in an insulated enclosure. Webb and Viskanta [8], in considering
incident solar radiation, presented experimental and numerical steady state results of natural
convective flow in a cavity with a semitransparent vertical wall and a participant media.
Behnia et al. [9] presented the same case as before but with a non-participating media and no
incident radiation. The studies presented by these authors mostly considered steady state
conditions of combined convection and radiation, but a few of them considered a semitrans-
parent wall and presented correlations between the Nusselt and the Rayleigh numbers.
However, none of them considered the transient process of the combined heat transfer in a
cavity with a solar control coating deposited onto a semitransparent wall, and hence there is
no such correlation for this case.

In order to understand the thermal performance of a room with a glass window with solar
control coating, a theoretical study of a transient two-dimensional model of a cavity with
a semitransparent wall for low Grashof numbers is presented. This study considers normal
incident solar radiation, conduction of energy through the semitransparent wall, radiative
exchange between the walls and a radiatively non-participating fluid. The governing equa-
tions are solved numerically. Also, the correlation between Nusselt and Rayleigh numbers and
the shading coefficient as a function of the ambient temperature are presented in this
problem.

2. PHYSICAL MODEL

The two-dimensional air-filled cavity with an aspect ratio of one is shown in Figure 1. The
airflow inside the cavity is considered to be laminar. The left face of the cavity is an
isothermal opaque wall at 21°C; the right face is a semitransparent conductive wall with a
SnS–CuxS solar control coating on it, where normal solar radiation flux is transmitted
through it. The conduction heat transfer process in the semitransparent wall is considered as

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Figure 1. Physical model and the co-ordinate system.

one-dimensional. The two assumptions, the two-dimensional air filled cavity and the laminar
air flow, are first approaches to solving the problem. The first assumption can be somewhat
realistic if the cavity is thought of as a long cavity with its third dimension normal to the
plane of the paper. The second assumption is for small cavities. Even though normal size
rooms are for Gr]109, small cavities could give a first approach to the thermal behavior of
the cavity with solar control coatings on windows. The Boussinesq approximation is assumed
in the governing equations. This approximation implies that, in the momentum equation, T
is taken as the difference between T2−TH, where T2 is the temperature of the isothermal
wall and TH was chosen as the maximum temperature reached by the solar control coating of
the semitransparent wall. The opaque and semitransparent walls are considered gray, diffuse
reflectors, and emitters of radiation. It is well known that a glass reflects in a specular
manner; however, inside an enclosure there are multiple reflections and the directionality of
each reflection is lost considering the heat fluxes in the boundaries. The optical and thermo-
physical properties are considered constant. The glass transmittance and reflectance as a
function of the solar incident angle are practically constant for angles less than 60°; although
the solar control coating transmittance and reflectance do depend on the wavelength (in the
visible region increases up to 40 per cent, but in the near infrared region remains constant
and its value is less than 20 per cent), the optical properties considered here are the integrated
spectrum values. The fluid inside the cavity is assumed to be radiatively non-participating
for a low content of water vapor. The thickness of the glass is 6 mm, with a solar control
coating of SnS–CuxS with negligible thickness (B6 mm). The properties are given in Table I.
The initial temperature is 21°C (294 K) and the incident solar radiation flux in the solar
control semitransparent wall is assumed to be normal with a constant value of AM2 (750
W m−2).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Table I. Optical and thermophysical properties of glass and SnS–CuxS solar control coating.

Glass (3 mm) Film (SnS–CuxS)Glass (6 mm) Air

ag=0.14 ag=0.06 A*sol=0.64 ka=26.3×10−3

W m−1 K
tg=0.86 T*sol=0.15tg=0.78 n=15.89×10−6 m2 s−1

rg=0.08 rg=0.08 R*sol=0.16 Cpa
=1.012 kJ kg−1 K

og=0.85 of=0.40 Densa=1.204 kg m−3

Densg=2500 kg m−3 Cpg
=0.750 kJ kg−1 Kkg=1.12 W m−1 K

3. MATHEMATICAL MODEL

The governing equations are those of the conservation of mass, momentum, and energy
equations for a square cavity with radiative exchange at the boundaries and conduction in the
solar control semitransparent wall. As the streamfunction–vorticity formulation is used, the
continuity equation is automatically satisfied and the pressure is eliminated as a solution
variable. The equations are expressed in a dimensionless form as
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The velocities are related to the streamfunction by
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The dimensionless variables were chosen according to Reference [10] as X=x/L, Y=y/L,
U=u/u0, V=6/u0, z=vL/u0, c=C/u0L, t= tu0/L, u=T/TH, where u0= (gbDTL)1/2.

The initial conditions in the cavity are those of a specified uniform temperature and a
stagnant gas. The hydrodynamic boundary conditions are given in terms of the streamfunction
as

c(0, Y, t)=c(1, Y, t)=c(X, 0, t)=c(X, 1, t)=0 (5)

The boundary conditions on vorticity are not known explicitly but will be determined by the
Taylor series expansion of the streamfunction in the vicinity of the wall. The following energy
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balances give the temperature boundary conditions on the top, bottom, and semitransparent
wall:

Energy balance on the bottom insulated wall 1

qk 1
=qk a1

+qr1
or

(u

(Y
)
Y=0

=NrQr1
, with Nr=

sTH
3 L

ka

and Qr1
=

qr1

sTH
4 (6)

Boundary condition for the isothermal wall 2
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The temperature boundary condition for the vertical semitransparent wall 4 has had careful
consideration. The conduction equation for this wall is coupled to the fluid energy equation by
its interior boundary condition. Thus, the conduction equation in dimensionless form of wall 4
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With the following boundary conditions:

1. energy balance between the inside air and the solar control coating qabsorbida=qk−qk a
+qr4

in dimensionless form
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2. energy balance between the glass and ambient air
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with Nh=L %h�/kg.
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The local Nusselt number in dimensionless form is given by

Nux= −
1

uf−u2

(u

(X
(12)

The dimensionless temperature of the vertical wall, opposite to the vertical semitransparent
wall, is specified as u(0, Y)=0.84, which corresponds to 21°C (294 K).

The terms Qr1
, Qr2

, Qr3
, and Qr4

are the dimensionless radiative fluxes inside the walls
of the cavity given by the radiative transfer equations. For gray diffusive walls with an
arbitrary temperature distribution, the configuration factors between any pair of ele-
ments of the boundary must be determined. The radiative heat flux along wall i is given
by
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where qi(xi) is the incoming radiative heat flux of the wall i and Ji is the radiosity. For each
wall of the cavity, the configuration factors Fi− j for a square cavity are already given in
Reference [10]. Thus, for the corresponding wall
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In solving the radiosity equations, dimensional values are used in the calculation of the
radiative fluxes on the boundaries, then the result is non-dimensionalized.

4. METHOD OF SOLUTION

Equations (1)–(4), the conduction equation (9) along with the radiative flux equations
(13)–(18), and their initial and boundary conditions (5)–(11) define the problem completely.
The equations are all coupled through the boundary conditions and/or the variables. Forward
time and central space differences approximated the derivatives of the partial differential
equations (1) and (3). The alternating direction implicit (ADI) finite difference technique was
used. The streamline equation (2) was solved by the method of Paceman and Rachford [11].
The conduction differential equation was solved numerically by using an explicit finite
difference formulation. The radiosity equations were solved by the method of successive
approximation. The integrals were evaluated by the Simpson’s rule. The net radiative heat
fluxes were calculated from the radiative net heat flux equation (13).

The temperature boundary condition of the interior semitransparent wall must have careful
consideration. The discretized couple boundary condition of the interior side of the semitrans-
parent wall with the solar control coating gives
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solar control coating of the semitransparent wall corresponding to the co-ordinate y= j ·Dy.
The net radiative heat flux Qr4

is calculated using Equation (13).
For the external side of the semitransparent wall
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with

C1=1+NhDX %, C2=Nrw
ogDX % and C3= −NhDX %u0−Nrw

ogDX %u0
4

The boundary values of the vorticity were calculated using the Taylor series expansion of the
streamfunction; using the boundary conditions on c and from the streamfunction equation (2),
the boundary conditions on z were calculated as

z1, j
k+1= −

2c2, j

2DY2 , zM+1, j
k+1 = −

2cM, j

2DX2 , z i,1
k+1= −

2ci,2

2DY2 , z i, j
k+1= −
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The solution procedure went in the following order. Knowing the initial and boundary
values of temperature and velocity, the radiosity equations (15)–(18) were calculated, then the
radiative net heat flux of the walls, Equation (13), was computed. As solar energy radiation
strikes the glass and the solar control coating, the energy conduction equation (9) for the glass
wall and their boundary conditions (19) and (20) were solved to update the temperature
distribution of the wall. The normal temperature gradients in the upper and lower wall were
calculated from Equations (6) and (8); the partial differential equation (3) was solved to obtain
the inside air temperature patterns. Then, the vorticity–transport equation (1) and the
streamfunction equation (2) were solved. After that, the boundary values of the vorticity
equation (21) were updated, then the velocity field from Equation (4) was calculated. The
procedure was repeated until a steady state was reached.

5. RESULTS

The solar radiation, the external convective heat transfer coefficient, the ambient temperature,
the radiative properties and the cavity size affect the flow and thermal fields inside the cavity.
Figure 2 shows the maximum temperature TH reached by the solar control coating of the
semitransparent wall. The time at which the film temperature reached their maximum value
was 0.5 (t=5), afterwards TH remains constant. Thus, the Grashof number is assumed
constant during the whole numerical process.

The parameter values used here were for a square cavity containing air, as a laminar flow,
for Gr=104, 105, and 106, with an ambient exterior temperature of 35°C, an external
convective heat transfer of 6.2 W m−2 °C and a cold vertical wall of 21°C. All the surface walls
were assumed to have an emittance of 0.9 except for the semitransparent wall, which has an
inside film emittance of 0.4 and an exterior glass emittance of 0.85. Table II shows the
parameter values used in the simulation.

To determine the time step, grid size, and convergence criteria several numerical experiments
were tested on a WS HP730. For Gr of 104, 105, and 106, a number of mesh sizes were
employed to check the convergence of the numerical results. Figures 3 and 4 show the
dimensionless temperature as a function of X for Y=0.5 for Gr of 104 and 105 for uniform
mesh sizes of DX=DY of 11×11, 21×21, and 31×31 and Dt of 0.002, 0.001, and 0.0005 for

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Figure 2. Temperature history of the solar control coating for Gr=104 and 105.

Table II. Typical values of the parameter values used in the simulation.

Gr=104–106 Nk=53.23 Nrg
=0.0104

Na=0.0346 L=0.0124–0.058Pr=0.73
G %=0.8815 Nh=0.1313 u0=0.0163–0.0745
TH=350 K Nr=1.151–5.38 o1=o2=o3=0.9

NL=0.103–0.587L %=0.006 m o4=of=0.4

dimensionless time of t=6 and 26. For Gr of 104 and 105, 31×31 nodal points and a time
increment of 0.001 were adequate in terms of accuracy and computed economy. For Gr=106,
a mesh of 51×51 and a time increment of 0.0005 were satisfactory, but the computer time
increases appreciably up to 15:36 h. Also, to validate the model, the computer program was
structured in such a way that the problem can be reduced to neglect radiation and conduction
through the semitransparent wall for comparison with the classical problem of natural
convection in a cavity [12]. Table III shows this comparison. The values of the isotherms and
the streamlines are in good agreement, presenting some differences at the corners of the cavity.
These differences could be due to the procedure of curve fitting.

To examine the effects of the use of the solar control coating on the semitransparent wall
and the radiative exchange between the walls, three cases were considered. Case A: the classical
case of natural convection in a cavity with opaque vertical isothermal walls at different
temperatures taken as reference case. Case B: the combined problem of natural convection,
conduction, and radiation in a cavity with a glass+solar control coating. Case C: the same as
case B except that the semitransparent wall is a clear glass. The semitransparent wall for both
cases is located on the right side of the cavity.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Figure 3. Temperature distribution as a function of X for Y=0.5 for Gr=104 for grid sizes of 11×11,
21×21, 31×31 and time increments of 0.002, 0.001, 0.0005 for t=6 and 26.

Figure 5(a) and (b) shows a comparison of the transient isothermal and streamline plots for
cases A and B for Gr=104 and t=6, 12, and 30. The semitransparent wall temperature
(located on the right side) increases very rapidly due to the absorbed solar radiation by the
solar control coating and the glass. For t=5, the mean temperature of the film reaches 0.955
(61.1°C). This maximum value was chosen for the hot wall of case A. In case B, the isotherms
compared with case A are less curved, indicating the influence of the radiative exchange. In the
streamline figures, the fluid circulates in a counterclockwise direction. The flow patterns are

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Figure 4. Temperature distribution as a function of X for Y=0.5 for Gr=105 for grid sizes of 11×11,
21×21, 31×31 and time increments of 0.002, 0.001, 0.0005 for t=6 and 26.

very similar, but in case A, the fluid is moving faster than in case B, as indicated by the density
of the streamlines. This is because, in case B, there are radiative exchanges between the walls,
and thus the amount of energy transferred to the inside of the cavity is divided in two terms,
convective and radiative; meanwhile, in case A, it is just convective energy.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Table III. Comparison between the natural convection results given by Wilkes and Churchill [12] and
the actual model.

Y Wilkes and Wilkes and %Dif.Actual ActualX %Dif. X Y
model,Church [12], model, Church [12],
cu cu

0.20.1 −0.75 −0.75 0.00 0.5 0.5 8.00 8.00 0.01
0.4 −0.50 −0.50 0.00 0.3 0.5 6.000.2 6.09 1.60
0.6 −0.50 −0.50 0.00 0.70.1 0.5 6.00 6.09 1.60

0.5 0.1 −0.50 −0.50 0.00 0.7 0.8 4.00 3.85 3.75
0.2 0.8 −0.25 −0.26 2.80 0.2 0.5 4.00 3.85 3.75

0.1 −0.25 −0.25 0.00 0.80.7 0.5 4.00 3.85 3.75
0.8 0.00 0.00 0.00 0.80.4 0.1 2.00 1.95 2.50
0.5 0.00 0.00 0.00 0.20.5 0.9 2.00 1.95 2.50

0.6 0.2 0.00 0.00 0.00 0.4 0.1 2.00 2.06 3.00
0.3 0.9 0.25 0.25 0.00 0.6 0.9 2.00 2.06 3.00

0.9 0.50 0.50 0.00 0.10.5 0.2 1.00 0.96 4.00
0.4 0.50 0.50 0.000.9 0.9 0.1 1.00 0.91 9.00
0.8 0.75 0.75 0.00 0.90.9 0.8 1.00 0.96 4.00

Figure 6(a) and (b) shows a comparison of the transient isotherms and streamlines hysterics
for Gr of 105 and t=6, 12, 20, and 30 for cases B and C. Although the shape of the isotherms
looks similar, there are differences. The isotherms are less curved in case C than in case B,
indicating that the convection regime is more pronounced in case B. That happens because
part of the energy that goes through the glass+ film is absorbed (a=0.61), increasing the
temperature of the coating and glass and the heat absorbed is transferred to the fluid. The
clear glass absorbs less energy (a=0.14), and thus transfers less energy by conduction to the
fluid. The isotherms in the upper side are less curved in case C compared with case B,
indicating that the diffusion is slower towards the core of the cavity. Looking at the
streamlines, the effect of convection is more pronounced in case B compared with case C,
which is very reasonable because the inside semitransparent wall temperature is higher,
u=0.954 (60.8°C), for case B than for case C, u=0.889 (38.1°C).

Figure 7(a) and (b) is similar to Figure 6(a) and (b) but for Gr of 106. As the Grashof
number increases, temperature gradients become more severe near the vertical walls and some
stratification is presented at the center of the cavity. For t=6, the isotherms of case C are less
curved than in case B, indicating also that in case C convection is less significant than case B.
At later times, t=30 and 60, the isotherms in the core region are practically horizontal,
indicating a temperature stratification. Looking at the streamlines, one vortex is presented in
most of the times except for case B, t=30 and 60, where two vortices are present. In both
cases, the vortices are closer to the walls. The boundary layers adjacent to the walls are thin
and fast compared with the ones of Figure 6. In case B, t=6, the flow spreads out from the
thin layer in the vertical wall and turns over, it starts to separate from the wall and then
reattached to it. For case C, at the same time, this effect is not shown yet. At later times the
effect is more pronounced, even for the two cases. This turn over effect has been already
reported in natural convection cavities but for greater Grashof numbers [1,3,4] and not in
combined natural convection and radiation.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 34: 585–607
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Figure 6. Isotherm (a) and streamline (b) histories for cases B and C, Gr=105 and t=6, 12, 20, and 40
from left to right. (a) Case B, minimum value 0.85, maximum value 0.95, increment 1; Case C, minimum
value 0.84, maximum value 0.96, increment 0.04. (b) Case B, minimum value 0.001, maximum value

0.029, increment 2; Case C, minimum value 0.001, maximum value 0.021, increment 2.
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Figure 6 (Continued)
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Figure 7. Isotherm (a) and streamline (b) histories for cases B and C, Gr=106 and t=6, 12, 30, and 60
from left to right. (a) Case B, minimum value 0.85, maximum value 0.95, increment 1. Case C, minimum
value 0.840, maximum value 0.884, increment 0.004; (b) Case B, minimum value 0.001, maximum value

0.018, increment 2; Case C, minimum value 0.001, maximum value 0.013, increment 1.
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Figure 7 (Continued)
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Figure 8 shows the vertical components of the velocity for cases A, B, and C for Gr=105

and 106. From these figures we can appreciate that if you increase the Grashof number, the
maximum of the vertical component of the velocity moves towards the vertical walls. Also, the
difference in velocities for cases A, B, and C is appreciated, as well as the stratification of the
fluid at the center.

A correlation for the average Nusselt number for the steady state were derived using
least-square linear regression for 1×1045Gr55×106 and Pr=0.73. The correlation is

Nuc=0.0643(Ra)0.355 for 7.3×1035Ra53.6×106

To observe the contribution of radiation in this kind of problem, Behnia et al. [9] introduced
a definition of a Nusselt number for radiation as Nur= (qrad/qc) ·Nuc; thus giving the total
Nusselt number as NuT=Nuc+Nur= (qrad/qc) ·Nuc. Using this, Figure 9 shows the variation
of the convective and the radiative Nusselt number versus the Rayleigh number. The Nur

increases slightly (almost constant) with the Ra number. This is due to the low range of
temperatures considered.

In calculating the heat balance, Table IV shows the net heat flux going to the inside and
outside of the cavity as well as the heat balance of the cavity for four different ambient
temperatures. These percentage differences might indicate that the numerical error is around 4
per cent.

The shading coefficient (SC) is a standard parameter used in the glazing industry and
measures the thermal heat gain efficiency through a glass window. It represents the ratio of the
heat that goes to the interior of the cavity through the semitransparent wall to that for a clear
3-mm glass (case B with 3-mm glass) and can be expressed for the system glass+ film as

Figure 8. Steady state vertical velocity components for (a) Gr=105 and (b) Gr=106 for cases A, B, and
C.
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Figure 9. Convective, radiative, and total Nusselt number versus Rayleigh number.

Table IV. Net heat flows to the interior and exterior for the cavity with glass+solar control coating and
clear glass for different ambient temperatures T0 for Gr=105.

Qint QintT0, °C Qext Dif.%Qext Qtot Qtot G, Dif.%
(case B),(case B), (case C),(case C), W m−2(case C), Qtot(case B), Qtot

W m−2 W m−2W m−2 (case B)W m−2 W m−2 (case C)W m−2

266.96 615.69 453.13 112.68 720.09 728.37 750 3.99 2.8830
283.56 628.55 442.97 98.06 726.5335 726.61 750 3.13 3.12

40 300.72 641.11 434.31 82.89 735.03 724.00 750 2.00 3.47
318.58 654.8145 424.29 67.08 742.87 721.89 750 0.95 3.75

SC=
[qi(T0)+tG ]glass+ film

[qi(T0)+tG ]3-mm clear glass

(24)

Figure 10 shows the curves for the SC versus ambient temperature. The upper curve is for
a cavity with 6-mm thick clear glass and the lower curve for a cavity with a 6-mm thick glass
with a solar control coating. It is observed that, for an ambient temperature of 35°C, the SC
for the cavity using the solar control coating was 0.42, and 0.92 for the cavity with clear glass,
indicating that, from the 100 per cent of energy that would go through a 3-mm thick clear
glass, only 42 per cent goes through because of the use of a 6-mm thick glass with a solar
control coating on it. If a clear glass of 6 mm is used, the heat gain to the inside of the cavity
would be 92 per cent. This result demonstrates the advantage of the solar control coating used
in windows.
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Figure 10. SC versus ambient temperature for cases B and C in steady state and Gr=105.

6. CONCLUSIONS

A transient two-dimensional mathematical model of a combined natural convection, conduc-
tion, and radiation in a square cavity containing air as a laminar and non-participating fluid
has been presented. One wall of the cavity was considered to be semitransparent with a solar
control coating on it. The following conditions were used for the modeling: initial tempera-
ture of 21°C, normal incident AM2 solar radiation (750 W m−2 °C) and ambient tempera-
ture T0 of 35°C for 1045Gr5106 and 30°C5T0545°C for Gr=105. Two comparisons
were presented: (1) between the classical problem of natural convection in a cavity with
isothermal opaque walls and a vertical semitransparent wall with a solar control coating, and
(2) between a cavity with a vertical semitransparent wall with a solar control coating and
without a solar control coating. From the first comparison, an influence of the radiative
exchange on the flow and temperature patterns was observed. A decrease in the convective
regime was detected. From the second comparison, a similar pattern was observed qualita-
tively but not quantitatively. The movement of the flow is slower in the cavity with the clear
glass. For Gr=106 and for all the cases, a wave effect appears on the upper side of the
cavity.

A correlation between the convective and radiative Nusselt number as a function of the
Rayleigh number for the cavity with SnS–CuxS solar control coating was developed. This is
one of the most important results of this study. However, from the industry point of view,
the shading coefficient is a more important parameter, which is presented as a function of
the ambient temperature. In general, these results indicate that according to the one-dimen-
sional model reported by Estrada et al. [13], even though the glass and the solar control
coating are warmer than the clear glass, the energy transferred by conduction and solar
energy transmitted through the glass/solar control coating system is lower than that in the
case of a system that uses clear glass. The difference was about 50.2 per cent, suggesting a
strong advantage, from the thermal point of view, for using the solar control coating on
glass windows.
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APPENDIX A. NOMENCLATURE

A* solar absorptance, %
Cp specific heat

gravity, m s−2g
incident solar radiation, W m−2G
dimensionless incident solar radiation; G/sTH

4G %
Gr Grashof number; gbDTL3/n2

heat transfer coefficient, W m−2, Kh�
height of cavity, mH

Ji radiosity of wall y
conductivity, W m−1 Kk
width of cavity, mL

L % thickness of glass, m
dimensionless parameter; ag/aNa

dimensionless parameter; hL %/kgNh

dimensionless parameter; kw/kaNk

dimensionless parameter; L %/LNL

radiative number; sTH
3 L/kaNr

Nusselt number; hL/kaNu
Prandtl number; n/aPr

qi incident energy on wall i
convective heat transferqc

heat conduction, W m−2qk

qri
net radiation of wall i
Rayleigh number; PrGrRa
integrated reflectance, %R*sol

sg extinction coefficient of glass, m−1

shading coefficientSC
time, st

T temperature, K
integrated transmittance, %T*sol

maximum film coating temperature, KTH

u0 reference velocity, m s−1

velocity components, m s−1u, 6
U, V dimensionless velocity; u/u0

co-ordinate axisx, y, x %
X, Y dimensionless co-ordinate axis

Greek letters
air diffusivity, m2 s−1a

ag glass absorptance
b thermal expansion coefficient, K−1
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emittanceo

n kinematic viscosity, m2 s−1

reflectance of wall iri

u dimensionless temperature, T/TH

Stefan–Boltzman constant, W m−2 K−4s

glass transmissivitytg

dimensionless time; tu0/Lt

vorticityv

streamlinesc

dimensionless vorticityz

C dimensionless streamlines

Indices
i incident energy on wall i

aira
net radiation on wall iri

filmf,4
maximum temperatureH

k conduction
glassg
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